

Transportation Engineering and Safety Conference

ENGINEERING & GUIDE RAIL MANAGEMENT

GIS AS A PLATFORM FOR CONDUCTING GUIDE RAIL ASSESSMENT.

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

PROJECT BACKGROUND

- Perform a comprehensive inventory and assessment of existing guide rail installations.
- Accurately locate and map the existing guide rail installations.
- Document the existing physical and warranting conditions (hazards).
- Prioritize guide rail upgrades and removal using a systematic approach.
- Achieve Long-Term Savings.

PROJECT BACKGROUND

Project Sponsor

- Delaware Valley Regional Planning Commission
- Fully Funded: \$966,000

Project Purpose

- Locate, Inventory & Assess
- Document & Report Design Conditions
- Upgrade Substandard Guide Rail

Project Need

- Prioritized Program of Improvements
- Establish a Maintenance Reporting System
- Improved Roadway Safety

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

EXISTING CONDITIONS

A. Types of Roadways

- 1. Non County Maintained Roadways
- 2. County Maintained Roadways (500 & Routes)

B. Types of Hazards

- 1. Bridges/Culverts
 - County Maintained
 - Non County (State)
- 2. Miscellaneous Hazards/Warranting Obstructions

C. Existing Guide Rail

- 1. Mapped and Inventoried
- 2. Mapped, Not Inventoried
- 3. Not Mapped or Inventoried

ASSET HEIRARCHY

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

PROJECT APPROACH

Define	Define Data Requirements
Establish	Establish Database Schema
Configure/Customize	Platform for Data collection, Management & QA/QC
Pilot	Pilot the Solution
Post-processing	Milepost assignments & Prioritization
Transfer	Transfer Solution to Client

• Define Data Requirements

Develop database schema that supports business

Use available starting points

Ensure data supports asset location/data collection/photos

Integrate with existing GIS, asset management systems, & guiderail data

Database Schema

- Guide Rail Leading/Trailing End
 Treatment
- Guide Rail Standard Data
- Guide Rail Condition Assessment
- Hazards/Warranting Obstructions

- Curb Start/End
- Rub Rail Start/End
- General Discrepancy Data
- Post processing (MP, prioritization, etc.)

						BCT, SRT, ET, ELT, CRT, QuadGuard, Buried,			Delivery (No Nulls	
36		29	I_end_typ	Leading End Type	Field Determine	Other, Type A - Thrie Beam, Type A - W Beam		Text (20)	Allowed)	
27		30	Land fr	Leading End Elave	Field Datarmine	N/A Straight Davabalia		Text (10)	Required Before	
or		30	I_CIIU_III	Leading Life I lare		N/A, Gragni, Palabolic		TEXL(10)	Licdanica. Deiolo.	
	ata								Delivery (No Nulls	Not Acceptable =
38	ę (31	I_end_con	Leading End Condition	Field Determine	Acceptable; Not Acceptable		Text (15)	Allowed)	Priority 2
	Ē								Delivery (No Nulls	Not Acceptable =
39	ading	32	I_end_grd	Leading End Grading	Field Determine	Acceptable; Not Acceptable		Text (15)	Allowed)	Priority 3
	SLe				******				Delivery (Ne Nulle	
40	5	22	Land no.	Leading End Near Obstructions	Field Datermine	Dracant: Not Dracant		Text (15)	Allowed)	Drecent - Driority 2
40	ł	33	I_CIIU_IIU	Leading End Near Obstructions		Freschi, Not Freschi		Text (15)	Allowedj	Ficaciii - Filolity 2
				Leading End Condition						
41		34	I_end_c_cm	Comments				Text (255)		
									Near Obstructions	
								-	Near Obstructions	
42		35	I_end_com	Leading End Comments			!	Text (255)	=Present	

JMT ArcGIS Online Technology Solution

Pilot the Solution (Field Test)

to

Ø,

Web-Based Management & QC

Home MC Guide Rails 6_5

New Map ♥ Create Presentation III Jonathan ♥

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

- ArcGIS Platform
- Web-Based Online Management
- GIS Collector Application
- Verizon Ellipsis
 Tablets

- DATA COLLECTION
- Over 80 Data Collection Elements
- $\circ~$ Categorized by Type
 - Rub Rail (Start/End)
 - Curb (Start/End)
 - End Treatments
 - Standard Data
 - Hazards
 - General Discrepancy Data
 - Conditions Assessment
 - Flags

1	liter
•	GR Standard Data
	Rub Rail Start
	Rub Rail Start
	Rub Rail End
٦.	Rub Rail End
	Curb Start
•	Curb Start
	Curb End
	Curb End
	Hazards
	Hazards
	General Discrepancy Data
-	General Discrepancy Data
	Condition Assesment
•	Condition Assesment

- All Information Geo-Coded
- Data Options
 - Drop Down Menus
 - Data Inputs
 - Alpha-Numeric Options
 - Notes
 - Photos
- Changes / Edits are Tracked
- Pre-Screen Locations
 - Input Prior to Field Visits

- Engineers Perform On-Site
 Inspection
 - By Route
 - By Grid
- Address Field Issues
 - Photos
 - Flags
- Project Management via Dashboard
 - Track Progress
 - Identify Issues

Aerial LiDAR

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

CONDITION ASSESSMENT

1 Guardrail no longer reasonably functional 2 Guardrail should function adequately under a majority of impacts 3 Should not impair the guardrail's ability to perform

PRIORITIZATION

The FHWA Functional Scoring System is utilized as the baseline to develop a standardized rating scale for comparing guide rail assemblies for the project.

• Existing, To Remain

Guiderail is installed with crash-worthy end-treatments, no extensive damage to physical conditions and immediate improvements are not warranted.

• Acceptable, To Be Improved

Guiderail does not require full replacement, but has been assessed in need of minor repairs, upgrades, or improvements based upon the existing conditions.

• Damaged, To Be Replaced

Guiderail assessed to be damaged to the point where it will not function properly.

PRIORITIZATION

- The FHWA Functional Scoring System is customized to develop a Zero (0) to Ten (10) Rating Scale for prioritizing guide rail.
- Other Design Criteria utilized to evaluate Guide Rail included:
 - Roadway Information: Posted Speed Limit, AADT, Crash History.
 - **Design Features:** Length of Need, post spacing, warranting analysis.
 - Rail Elements: Rail height, spacer blocks, bolt connections and washers.
 - End Treatments: Type, Condition, proximity to fixed objects/utility poles.

	COND	TIONS ASSESSMENT				
	Rail Floment					
Top of Poil Height -	<24					
Top of Rail Height =	-24	STAN	DARD SECT	ION OF W-BEA	M	
Rail Element Condition =	Intact	EXTEN	EXTENT OF DAMAGE			ITY
Rail Element Alignment =	Aligned	RAIL ELEMENT SEPARATED	RAIL ELEMENT SEPARATED			
No. of Broken, Bent, or	2	TOP OF PAUL HEIGHT < 24"		1		
Separated Posts =	-	TOP OF RAIL HEIGHT \$24	A	MOUNT OF		
Rail Element Functionality =	1	AMOU	NMENT S	ROKEN/BENT OR EPARATED POSTS		
	Spacer Blocks	RAIL ELEMENTS		0	3	
One of the state of the	Spacer Blocks	INTACT	<6"	1-2	2	
Spacer Block Material =	None	FULL SPLICES		0.2	2	
No. Damaged Blocks =		TOP OF RAIL	6" - 12"	≥3	1	
Spacer Block Comments =		HEIGHT ≥25**	≥18"	NOT APPLICABLE	1	
Spacer Block Functionality =	1	* Guardrail less than 26" shou	uld be considered f	or replacement.		
Bolts		FUNCTIONALITY CATEGORIES 1 Guardrail no longer reasonably functional 2 Guardrail should function adequately under a majority of impacts				
Bolts Connecting Rails, Spacers, and Posts =	Present	3 Should not impair the gu	ardrail's ability to p	perform		
No. Incomplete Bolt Connections =	1	Vegetation within	n 4' of Guide	Rail = No	t Present	
Bolt Functionality =	2	Utili	ity Poles Pre	esent = F	Present	
		Utilit	v Poles Loc	ation =	Behind	1
	Posts	Utility P	oles Comm	ents =		
ost Spacing at Obstruction =	Typical			<4 ft	behind GR	
Post Functionality -	0	Fixed Obst	tructions Pre	sent =	Present	
rostrunctoriality -	•	Fixed Obst	Fixed Obstructions Present =		Debind	
		Fixed Obstruct	Fixed Obstructions Location =		bennu	
		Fixed Obstruct	uons Comm	Brid	ge Railing	
Total Functional Searca	4	ELINAVA E	un officianal C		4	

PRIORITIZATION

- The Final Prioritization & Functional Scoring System creates nine classifications of Guide Rail.
 - Low, Medium and High Priority within the Three (3) Classifications

				PRIORI	ITY LEVE	LCATEG	ORIZAT	ION			
Total	Functiona	I Score =	10								
	Length o	of Need =	225								
Leadin	g End Tre	atment =		SKT				_			
Trailin	g End Tre	atment =	GR /	Attachmen	3			4			
)esign S	peed/A.D.1	Γ. Class =	40-50 MPH: Over (6,000						
							С	lassificati	on		
		Prior	ity Level		Low	Medium	C High	lassificati De	on escription	of Conditic	on
	A	Prior Functio	ity Level nal, To Be Mai	ntained	Low	Medium	C High	lassificati De	on escription	of Conditic	on
	A B	Prior Functio Accept	ity Level nal, To Be Mai able, To Be Im	ntained proved	Low	Medium	C High	lassificatio De	on escription	of Conditic	on
					,						

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

CONDITION ASSESSMENT

Guide Rail Prioritization Matrix

	Priority Level	Low	Medium	High	Total
Α	Functional, To Be Maintained	135	154	157	446
В	Acceptable, To Be Improved	181	169	131	481
С	Damaged, To Be Replaced	197	69	47	313
	Total	513	392	335	1,240

SUMMARY OF FINDINGS

Guide Rail Inventory Summary

- 1,326 Guide Rail Assemblies Mapped
- 1,240 Guide Rail Assemblies Inventoried
- 2,551 Guide Rail End Treatments Inventoried
- 275 Off-Network Bridges/Culverts with No Guide Rail Assemblies
- 47 High-Priority Guide Rail Assemblies

Guide Rail End Treatment Inventory Summary

- 148 SKT
- 85 FLEAT
- 71 ET2000
- 428 BCT
- 6 ELT
- 115 SRT
- 23 CRT
- 504 GR Attachment

- 7 Impact Attenuator
- 134 Flared End
- 12 Turned Down
- 351 Rounded End
- 97 End Anchor
- 3 BIB
- 443 Other (Shovel Shaped)
- 124 Bullnose

Project Background

Existing Conditions

Project Approach

Data Collection

Engineering Metrics

Summary of Findings

IMPLEMENT IMPROVEMENTS

- Nine Classifications of Guide Rail
- Short –Term and Long-Term Improvements
 - The short-term recommendation will address the immediate/high-priority improvements needed to improve guide rail functionality.
 - The long-term recommendation will identify the "planninglevel" guide rail and/or roadside improvements which should be implemented to sustain guide rail compliancy and functionality.

	Priority Level	Low	Medium	High	Total
A	Functional, To Be Maintained	135	154	157	446
В	Acceptable, To Be Improved	181	169	131	481
С	Damaged, To Be Replaced	197	69	47	313
	Total	513	392	335	1,240

LESSONS LEARNED

- Pilot Field Test
- Bridge/Structure Attachments
 - Transition Segments
- Short Term and Long-Term Improvements
 - Maintenance vs. Enhancements

Program Improvements (Preliminary Cost Estimates)

Create a System Capable of Supporting Future Projects

- Identify Guide Rail for Removal
- Assess Critical Slopes
- Review Hazards & Warrants
- Identify Unprotected Warranting Conditions
- Complete Inventory of Structures (Bridges/Culverts)

Implement Design, Construction & Maintenance

CONTACT INFORMATION

Mercer County Department of Transportation and Infrastructure Janel A. (Bisacquino) McCoy, GIS Specialist

jbisacquino@mercercounty.org

Mercer County Department of Transportation and Infrastructure George Fallat, PE, County Traffic Engineer gfallat@mercercounty.org

Johnson, Mirmiran & Thompson, Inc. James J. Carr, PE, PTP, PTOE, Traffic Engineering &