Managing Safety Assets at the Speed of LiDAR

Paul DiGiacobbe, PE, DBIA – MASER Consulting Ryan Putt, PE – HNTB Corporation Kevin Poad, PE – HNTB Corporation

Introduction

Using LiDAR to Manage Safety Assets

SPEED – the acquisition phase is being performed at driving speeds

SAFETY – the information acquired is being done without putting workers in harms way

RELIABILITY – the spatial information is proving to be very reliable and reusable for a wide variety of applications

- PennDOT District 6-0 identified locations based on crash clusters
- Hundreds of locations across the district's five counties
- Address safety solutions
 - Striping / Lege
 - Signage
 - Guide Rail
 - Delineation

HNTB

MASER

- Pre-LiDAR Survey Plan Production
 - Base Mapping
 - Pennsylvania Spatial Data Access (PASDA)
 - Google Street View
 - Field View
 - Identifying Curve Speed Advisories
 - Ball Bank
 - Proposed Plans
 - Base map revisions

Proposed safety improvements

HNTB

pennsylvania

PENNSTATI

LiDAR efforts at PennDOT District 6

Low Cost Safety Improvements

Case Study #1 Roundabout Design Survey

pennsylvania

Case Study #2 Realignment Study

HNTB

Base Mapping for Roundabout Design

- Data collected for asset inventory
- Post-controlled to produce an engineering base
- Currently being used to develop a roundabout design

Step 1 – Aerial image draped on surface

Step 2 – Extracted roadway geometry features

Step 3 – Proposed realignment

Step 4 – Plan production

- High speed geospatial data acquisition
- Processed safely in the office
- Pavement markings, signs, guide rail, etc. can be collected and attributed efficiently
- Information collected can be displayed in either MicroStation or ESRI

Pennsylvania Welcomes You

ATE OF INDEPENDENCE

Straight Line Diagrams (SLD) Historic

PENNSTATE

HNTB

- Paper Diagrams
- Not to Scale

- Complex Annotation
- Infrequent Updates

- Dynamic Map
- To Scale

- Automatic Updates
- Direct Access Office and Field

SR 0322 – District 6-0, Chester County

- -23 miles long
- Final product over 100 plan sheets

X

-

MASER

US 1 Township Line Road

- Emergency Location
- Frequency of Traffic Incidents
- Public spotlight

BEFORE

AFTER

SR 0001 & SR 0032 Limited Access Interchange

- District 6-0, Bucks County
- Emergency Location
- Dangerous weave

Using Mobile LiDAR to Optimize the Analysis of Safety Assets

Advisory Speed for Horizontal Curves

How current technology is being used to improve upon prevailing methods

The Statistics

- Large number of fatal crashes classified as roadway departures
- Many of these occur at horizontal curves
- In general, crash statistics show increases across-the-board in 2015 and 2016 for the first time in nearly a decade

The Statistics

Speeding			
Speeding-Related Fatalities			
2016	10,111 (27%)		
2015	9,723 (27%)		
2014	9,283 (28%)		
Source: FARS			

Gen	eral	St	atis	tics

Fatality 100 Mill	Rate per ion VMT
2016	1.18
2015	1.15
2014	1.08

Fatality Rate per 100,000 Population		
2016	11.59	
2015	11.06	
2014	10.28	
Source: FARS/Census		

ource:	FARS/Census	

Injury Rate per 100 Million VMT		
2016	N/A [†]	
2015	79	
2014	77	

Injury Rate per 100,000 Population 2016 N/A⁺ 2015 761 2014 734

PENNSTATE

Source: GES/FHWA

Source: GES/Census

Rural Versus Urban Fatalities*		
	Rural	Urban
2016	18,590 (51%)	17,656 (49%)
2015	17,572 (51%)	16,830 (49%)
2014	16,791 (51%)	15,917 (49%)
Source: FARS *Percent based on known land use		

U.S. Department of Transportation National Highway Traffic Safety Administration

Prevailing Methods

- Accelerometer Method
- Ball-Bank Indicator Method
- AASHTO Geometric Design Method
- Comp $V^2 = 15(0.01e+f)R$
- GPS Method
- Direct Method

Drawbacks of Prevailing Methods

- Time-consuming
- Difficult to replicate and verify findings
- Subjective and Inconsistent Results
- Equipment installation, calibration, training
- Personnel Safety during field testing

HNTB

MASER

A New Method... ...using LIDAR

- Precise, real-world data at your finger tips
- Curve can be evaluated from the office using TopoDOT, a MicroStation add-on

ennsvlvania

- Calculations can be checked, verified and replicated
- Consistent results

HNTB

How it Works

- Required Inputs using TopoDOT:
 - Posted Speed
 - Friction Factor, f (Table 3-7, AASHTO Green Book 2011)
 - Lane Width

How it Works (cont'd)

- Establish lane centerline
 - Striping can easily be extracted by intensity
 - Offset to center of lane

How it Works (cont'd)

- Drape centerline onto point cloud surface
- Generate best fit arcs

How it Works (cont'd)

Process data and compile reports

The Future of LiDAR

- Guide rail asset management
- Pavement Condition

Questions?

